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ABSTRACT

Analyzing data on-board a spacecraft as it is collected en-
ables several advanced spacecraft capabilities, such as pri-
oritizing observations to make the best use of limited band-
width and reacting to dynamic events as they happen. In
this paper, we describe how we addressed the unique chal-
lenges associated with on-board mining of data as it is col-
lected: uncalibrated data, noisy observations, and severe
limitations on computational and memory resources. The
goal of this effort, which falls into the emerging application
area of spacecraft-based data mining, was to study three
specific science phenomena on Mars. Following previous
work that used a linear support vector machine (SVM) on-
board the Earth Observing 1 spacecraft, we developed three
data mining techniques for use on-board the Mars Odyssey
spacecraft. These methods range from simple threshold-
ing to state-of-the-art reduced-set SVM technology. We
tested these algorithms on archived data in a flight soft-
ware testbed. We also describe a significant, serendipitous
science discovery of this data mining effort: the confirmation
of a water ice annulus around the north polar cap of Mars.
Finally, we conclude with a discussion on lessons learned in
developing algorithms for use on-board a spacecraft.

Categories and Subject Descriptors
1.5.2 [Pattern Recognition]: Design Methodology—Clas-
sifier design and evaluation
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1. INTRODUCTION

There are a number of resource-constrained environment ap-
plication domains in which it may be desired to perform
data mining. Examples include embedded mobile devices,
sensor webs, and on-board settings such as spacecraft or
unpiloted air vehicles. Typically, these environments have
limited CPU and RAM resources. In many cases, the data
available is uncalibrated. An emerging paradigm in this cat-
egory, addressed in this paper, is the mining of scientific
data on-board a spacecraft. A primary purpose of scientific
planetary spacecraft is to collect measurements of physical
values that provide information to gain an understanding
of the world (e.g. space environment, planetary surface or
atmosphere, etc.) Historically, data is collected by prespec-
ifying all possible parameters including when and where to
acquire measurements. Collected data is transmitted to the
ground where it is calibrated and then analyzed by domain
experts such as scientists. There is no opportunity to adjust
what is acquired or transmitted based on the contents of the
data itself.

Recently, we posited that significantly more science could be
accomplished by a mission or spacecraft if data can be ana-
lyzed on-board, and we demonstrated the principles through
the use of a linear support vector machine (SVM) on-board
the Earth orbiting EO-1 spacecraft [4, 3]. There are three
major reasons that on-board science data mining is desir-
able. First, it can enable detection and rapid reaction to
dynamic events. Second, on-board data analysis can be
used to prioritize the data that is collected. Finally, that
analysis can produce additional science products (e.g., data
summaries or dynamic event detections) that consume little
bandwidth but provide key insights into the data. We focus
on the latter two cases, which both enable more effective use
of limited bandwidth.

A common property of remote missions is that the space-
craft or instrument is capable of collecting more data than
can be accommodated by the downlink volume available. In
this circumstance, an opportunity exists to collect additional
data and select only the most interesting for transmission.
Success of such an operational mode relies on being able to
identify, on-board, data that is more interesting than what



would be collected with the traditional method of preselect-
ing exactly what data to collect and when. This requires
a specification of what constitutes “interesting” data, which
must be translated into an algorithm that can operate in the
computational environment of the spacecraft on the data in
the form it is available (i.e., uncalibrated, noisy).

In this paper, we present three data mining techniques for
use on-board the Mars Odyssey spacecraft, ranging from
simple thresholding to state-of-the-art reduced-set SVM tech-
nology. Each of these algorithms has been thoroughly tested
on archived data in a flight software testbed. We describe
the algorithms and test results, including a significant, se-
rendipitous scientific finding that resulted from the data
mining effort: the confirmation of a water ice annulus around
the north polar cap of Mars. We also present lessons learned
in developing successful on-board science data analysis ap-
plications.

2. APPLICATION DOMAIN: MARS DATA
ANALYSIS

This paper focuses on techniques that have been developed
for three science investigations relevant to data that is col-
lected in Mars orbit by the Mars Odyssey spacecraft. Odys-
sey was launched in 2001 and has been mapping the surface
of Mars for more than five years. We focus specifically on
observations made by the Thermal EMission Imaging Sys-
tem (THEMIS), a multi-wavelength camera on Odyssey [5].
THEMIS combines a 5-wavelength visible imaging system
(0.425-0.860 pm) with a 10-band infra-red (IR) imaging sys-
tem (6.78-14.88 um). The resolution of the visible imager is
18 meters per pixel while the resolution of the IR imager is
100 meters per pixel. In this work, we analyze the THEMIS
IR images. Each image is 320 pixels (32 km) wide and a
variable number (3600 to 14352) of pixels long, divided into
256-line “framelets”.

A motivation for selecting the THEMIS instrument is that it
does have the capability of collecting more data than band-
width limitations will permit to be downloaded to Earth.
By analyzing data collected at the full capability of the
instrument, up to an order of magnitude more area may
be monitored for rare science features. There are two im-
portant challenges associated with analyzing THEMIS data.
The first is that data is not calibrated on-board the space-
craft, so any analysis performed must be robust to significant
noise. Second, the THEMIS camera experiences significant
“drift”, in which the camera’s response function is altered
due to temperature changes it experiences during its orbit.
As a result, the values it records over the course of a single
image can gradually increase or decrease even when there is
no actual change being observed. This phenomenon is more
pronounced for longer images.

We focus on an operational scenario in which we wish to
make the best use of limited bandwidth. Each of the three
methods that we have developed makes a determination
about whether an event of interest is contained in a given
THEMIS image. If there is a positive detection, there are
several options for how to proceed. In order of lowest to
highest bandwidth use, they are:

1. Transmit a brief summary of the detection, such as
the latitude and longitude or time-on-orbit when the
detection was made.

2. Transmit a subset of the image that covers the region
that caused the positive detection.

3. Transmit the entire image when any detection is made.

Depending on the current bandwidth available, mission op-
erators can select the appropriate mode for operation. Op-
tion 1 requires the least bandwidth can can be used once
operational accuracy has been validated. Option 2 requires
less bandwidth than option 3 but higher complexity, since
it requires the ability to crop or subset an image after it is
collected; this capability was not originally designed into the
Mars Odyssey software and would need to be added.

The specific science goals that we seek to support through
on-board data mining are: thermal anomaly detection, polar
cap tracking, and aerosol opacity estimation. We discuss
each application, the algorithmic solution, and provide test
results for each method.

3. THERMAL ANOMALY DETECTION

The first algorithm was developed to identify thermal anoma-
lies on the surface of the planet. This feature was selected
due to the profound scientific significance of detecting such
an anomaly. It is not definitively known whether Mars is
currently thermally active. Obtaining proof of current ther-
mal activity would have major scientific implications. A
thermal anomaly is defined as a region where the surface
temperature is significantly warmer or colder than expected,
given its location on the planet, the season, and local topog-
raphy. A warm thermal anomaly could indicate the presence
of subsurface hydrothermal activity, which would have im-
mediate implications for the search for life. No such regions
are yet known to exist on Mars, and they are likely to be
small and rare, if present at all. Nevertheless, it is difficult
to imagine a more significant discovery about the Martian
surface, short of detecting large amounts of water or life it-
self. Other thermal anomalies include active lava flows, frost
at low latitudes, and very fresh impact craters. THEMIS,
with its high spatial resolution and thermal sensitivity, is an
excellent instrument for searching for thermal anomalies.

3.1 Thermal Anomaly Detection: Algorithm

Our approach detects thermal anomalies by searching for
pixels that exceed or drop below a specified temperature
threshold. To estimate the temperature, we use a single
wavelength band: THEMIS band 9 (12.57 pm), where the
instrument has the greatest signal to noise ratio and is most
sensitive to surface temperatures. We use an approximate
conversion from temperature to a specific DN (raw pixel)
value. The particular threshold used can vary depending
on the type of thermal anomaly, the time of day (nighttime
vs. daytime), the latitude, and the season. Scientists will
be able to specify these parameters from the ground, how-
ever a single threshold is used per image. As there may
be data artifacts or noisy pixels within an image, we apply
a post-processing step to minimize false alarms. If there
are more than a specified number of pixels that are above
the threshold, the image is not flagged as containing a ther-
mal anomaly. This post-processing is employing the domain



knowledge that any thermal anomaly discovered should be
very localized.

3.2 Thermal Anomaly Detection: Results

We evaluated this algorithm on 14,856 archived THEMIS
images with the goal of detecting hot thermal anomalies.
We analyzed nighttime images that were collected between
60 degrees north and 60 degrees south of the equator, with a
threshold of 240 K. The thermal anomaly detection method
signaled a detection for 143 of the 14,856 images. As no
thermal anomalies are yet known to exist on Mars, these de-
tections can be considered to be false alarms. However, the
domain scientist expressed an interest in manually examin-
ing these images and found them to be interesting from a ge-
ological perspective. Thus, the global thresholding reduced
the number of image candidates requiring manual analy-
sis by a factor of 100. Operationally, the false alarm rate
(< 1%) was deemed acceptable by the THEMIS scientists.
Since no true positive examples are available, we also con-
ducted a set of tests to confirm detection with synthetically
introduced thermal anomalies. All such synthetic positives
were correctly detected by the algorithm.

4. POLAR CAP EDGE DETECTION

The second algorithm was developed to identify polar cap
edges. Like the Earth, Mars experiences significant seasonal
weather patterns. One result of these changes is the presence
of COz ice caps at both poles that advance and recede sea-
sonally. The seasonal cycling of COy from the atmosphere
to the polar caps (condensation) and back to the atmosphere
(sublimation) significantly alters the distribution of mass on
the planet. This effect is large enough that it is possible,
even from Earth, to observe the resulting oscillation of the
center of gravity of Mars [10]. Scientists are interested in
tracking the motion of the polar caps over time so that we
can better understand the processes at the north and south
poles as well as any interannual changes in polar cap be-
havior. Since the polar caps stand out as distinctly colder
than the rest of Mars, an ideal way to track them is to use
an camera in Mars orbit. THEMIS has yielded the best IR
observations of the polar cap in terms of spatial resolution
(100 m per pixel), exceeding that of the Thermal Emission
Spectrometer (TES) (3 km per pixel) on the Mars Global
Surveyor spacecraft and the Visible and Infrared Mapping
Spectrometer (OMEGA) (300 m to several km per pixel) on
the Mars Express spacecraft.

Since the exact location of the edge of the polar cap is not
always known ahead of time, not every polar image success-
fully captures it. For example, a recent north pole imag-
ing campaign resulted in a data set that is about one-third
composed of images containing the polar cap edge. With
the ability to automatically prioritize images that contain
the cap edge, we can increase the number of detections that
are transmitted to Earth without increasing, or even by de-
creasing, the amount of bandwidth required.

As with thermal anomaly detection, we use THEMIS band
9 data to obtain the surface temperate. Some details of the
polar cap edge detection algorithm were previously reported
at the i-SATRAS conference [14]. We present new results
obtained when porting this algorithm to a flight software

testbed. We also discuss the serendipitous discovery of the
water ice annulus south of the north polar cap on Mars.

4.1 Polar Cap Edge Detection: Algorithm

Due to Mars Odyssey’s orbit, images of the north polar re-
gion are collected from north to south on the daylit side of
the planet. An image may partially contain the polar cap,
it may not contain the cap at all, or it may contain only the
cap. Our algorithm exploits the fact that the defrosted ter-
rain surrounding the polar cap is significantly warmer than
the CO2 frost and ice. Therefore, we can detect whether
a given image contains the edge of the polar cap by deter-
mining whether its temperature histogram is bimodal. If it
contains two peaks (at reasonable temperatures), then it is
likely to contain the edge of the polar cap; if not, it is likely
to cover only the polar cap or only the defrosted terrain.
For bimodal images, once we identify a threshold between
the peaks, we can identify the location in the image where
the transition from COs2 ice to defrosted terrain (the edge
of the cap) occurs.

The true condensation temperature of CO2 is known a pri-
ori. If the temperature data available on-board the space-
craft were fully calibrated, we could specify the expected
separation between “CQO2 ice” and “defrosted terrain”. How-
ever, since we are working with uncalibrated data as it is col-
lected, we must instead adaptively determine what threshold
to use.

Step 1: Calibration [Optional]. Our method of characteriz-
ing the shape of the temperature histogram does not rely
on absolute temperatures and, in fact, can be applied with-
out any calibration. However, we gain a slight improvement
in precision by performing a fast approximate calibration
to help select the most appropriate threshold. We pseudo-
calibrate [1] each pixel ¢ in the image by converting the raw
digital number, DN;, to a temperature, T; (Kelvin):

x=(DN; —ox g) x g/16
T; =101.85 x In(z) — 223.3,

where o and g are the instrument offset and gain parameters,
provided in the header of the data file.

Step 2: Temperature Histogram. We construct a histogram
of all of the temperature values in the image. Each his-
togram bin is 2 K wide, and the histogram ranges from
130 to 270 K. Figure 1(a) shows the histogram for image
109779015. The larger mode corresponds to the cold areas
covered by frozen CO2 and the warmer mode corresponds
to the defrosted terrain.

Step 8: Dynamic Thresholding. We identify the character-
istic “dip” (local minimum) between the two temperature
modes, and select the corresponding temperature, 7”, as
the threshold that distinguishes the polar cap from non-cap
pixels. More specifically, we first identify the left and right
peaks as local maxima in the histogram. We then identify
the minimal point between them as the appropriate tem-
perature threshold. In Figure 1(a), 7" = 175 K. Finally, we
filter out spurious detections by requiring that 7" be in the
range [160,210] K (based on domain knowledge).

Step 4: Cap Edge Identification. The COg cap is not a
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Figure 1: THEMIS data (band 9) for image 109779015.

discrete phenomenon with an abrupt “edge”. Instead, it
grows thinner with increasing distance from the pole, even-
tually becoming a thin layer of CO5 frost, then isolated frost
deposits, and then disappearing completely. Therefore, we
define the cap “edge” as the point at which only 50% of the
surface is covered in frozen CO2. We apply the temperature
threshold to the original image by marking each pixel that is
colder than 7" as belonging to the polar cap and each pixel
that is warmer than 7" as “non-cap”. We then proceed from
north to south and examine each line of the image, halting
when we find a line that is less than 50% “cap”. For image
109779015, we find the cap edge at latitude 61.05°N.

To provide further insight into this process, the temperature
profile for image 109779015 is shown in Figure 1(b). This
profile was generated by averaging all pixels in each image
line to produce a single cross-track average temperature for
that line. It shows the characteristic shape we observe in
THEMIS images that contain the edge of the CO2 cap: a
sigmoid curve that transitions from a low temperature com-
patible with the presence of CO; ice to a temperature that
is too warm to support CO2 ice. The beginning of the de-
frosting zone, as annotated, occurs at about line 6200, at a
temperature of 160 K, and it ends near line 9600, at 185 K.

4.2 Polar Cap Edge Detection: Results

To evaluate the detection rate and precision of our algo-
rithm, we compared it to two independent methods for po-
lar cap detection: a ground-based model that uses simul-
taneous, fully calibrated observations from an instrument

with lower spatial resolution, and manual annotations of the
THEMIS images.

4.2.1 Comparison to the TES Model

The Thermal Emission Spectrometer (TES), on-board Mars
Global Surveyor, is also an IR camera in Mars orbit. TES
observes at wavelengths ranging from 6 to 50 pm. Although
TES has much lower spatial resolution than THEMIS, its
temperature observations are much more reliably calibrated.
The TES-based model is a 51-coefficient Fourier fit to cap
edge locations identified in 60-km binned TES data, with a
1-sigma error estimate of 1.4 degrees of latitude [13]. For
image 109779015, the TES model predicts that the cap edge
to be at 61.96°N, which is 0.91 degrees north of our detection

and well within the margin of error for the TES model.

4.2.2 Manual Annotations

As a second source of independent validation, a student who
was not involved in the algorithm development was trained
to manually annotate the beginning and end of the defrost-
ing zone in THEMIS images. The defrosting zone stretches
from where the COz ice begins to sublimate to the point at
which no CO2 remains. A total of 435 images were anno-
tated in this fashion. Rather than looking at the tempera-
ture histogram or the images themselves, these annotations
were generated after examining each image’s temperature
profile, as in Figure 1(b). Our manual annotator identified
the beginning and end of this zone to the nearest 100 lines.
Therefore, each annotation is specified 10 km (1 line =
100 m). We interpret the midpoint as a first approximation
to the edge of the cap. For image 109779015, this occurs at
line 7900 (not explicitly shown in Figure 1(b)).

A natural question to ask is to what degree the manual an-
notations and the TES model predictions agree. We found
high agreement in terms of deciding which images contained
the polar cap (426 of 435), but less agreement about the ex-
act location of the cap. The mean deviation between the
manual annotations and the TES model was 2.07 degrees
of latitude, or about 124 km, with a strong southward bias.
That is, the manual annotations tended to indicate that the
polar cap edge was further south than what the TES model
would predict. Therefore, although we will evaluate against
both standards (TES model and manual annotations), we
rely more heavily on our comparison with the manual an-
notations, since they were derived from the same THEMIS
data that our algorithm uses.

4.2.3 Performance

In terms of identifying which images contain the CO2 po-
lar cap edge, we find good agreement with both the TES
model (96.3%) and with the manual THEMIS annotations
(93.3%); see Table 1. The precision as measured against
both standards is very high, as shown by the small number
of false positives detected. Recall is somewhat lower in both
cases, due to the larger number of false negatives.

For the 80 images in which the cap edge was detected, we
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Table 1: Agreement between our detections and two
standards in identifying which THEMIS images con-
tain the CO; polar cap edge (435 total images).

Standard || TES Model | Manual annotations
Recall 92.0% 86.4%

Precision 97.2% 94.3%

False pos. 4 8

False neg. 12 21

Agreement || 419 (96.3%) 406 (93.3%)

also evaluated the degree to which the detected location of
the cap edge matched both standards. The mean deviation
between our detections and the TES model was 1.21 degrees
(about 72 km, and within the TES model margin of error,
84 km). The mean deviation between our detections and
the manual annotations was just 28 km; the estimated error
in the manual annotations is 10 km. We also observe a
bias in both cases; we tend to detect the cap edge slightly
further south than where the TES model predicts it to be,
and slightly north of where the manual annotations indicate
that it is. This is consistent with our comparison to the TES
model against the manual THEMIS annotations.

4.3 Scientific Discovery: Water Ice Annulus
During the course of our analysis of the polar images, we
identified some anomalous images in which there are not two
but three temperature modes present. In consultation with
domain experts, we determined that the “middle” mode,
with intermediate temperature values, is likely to correspond
to a region that is covered by water ice as the CO2 cap re-
cedes north of it. Water ice exists at temperatures that are
too warm to support COz ice but too cold to be defrosted
terrain. The existence of this water ice annulus had been
posited based on modeling [7], and TES has seen some ev-
idence for its existence [8], but this was the first time that
supporting evidence at high spatial resolution was discov-
ered. Identifying where water currently exists on Mars, and
in what state, is a priority of the NASA Mars Exploration
Program. As is often the case with large data sets, inter-
esting facets of the data that would otherwise go unnoticed
can be uncovered during the data mining process. We have
written up this discovery for the benefit of the planetary
science audience [15]; here, we relate the salient details as
an example of the benefits of this kind of data mining.

A total of 197 polar images had either two or three tem-
perature modes. Based on a manual examination of their
temperature histograms, we found that 155 images had two
modes and 42 images had three modes. Figure 2 shows the
trimodal histogram and the corresponding temperature pro-
file for one such image (109626013). Comparing to Figure 1,
we find that this image is qualitatively different in both his-
togram and profile; it has three modes, and instead of a
single rise from cold to warm temperatures, there are two
distinct “steps” in the profile (near lines 5000 and 11000).

We analyzed all 42 such trimodal images to identify the tem-
peratures of each of their components using the k-means
clustering algorithm [9]. For each image, we clustered all
of the pixels with £ = 3 and identified the mean temper-
ature for each component. Although there is some overlap
between the components, there is a clear separation in terms
of the majority of observed temperatures. We interpret the
three components, based on physical constraints, as follows:

Temperature | Mean | Probable major

range temp. | constituent
Component 1 | 157-175 K 166 K | COz2 ice/frost
Component 2 | 167-206 K 182 K | Water ice
Component 3 | 189-216 K 201 K | Defrosted terrain

In further analysis of the data, we found that the annulus
tends to grow wider as spring advances and the seasonal
cap recedes [15]. This finding had not been previously re-
ported (or posited) and serves to increase our understanding
of seasonal volatile cycling on Mars.

5. AEROSOL OPACITY ESTIMATION

The third algorithm was developed to identify high opac-
ity atmospheric events. The opacity (or optical depth) is a
measure of the amount of light removed by scattering or ab-
sorption as it passes through the atmosphere. Total opacity
can be divided into components contributed by gases and
various suspended particles. Here, we focus on two impor-
tant components of the Martian atmosphere: dust and water
ice particles, which form thin clouds. Atmospheric scientists
are interested in the composition of the Martian atmosphere
to better understand how gases, dust, and ice particles cir-
culate on Mars. In addition, accurate estimations of the
surface mineralogy from orbit depend on the ability to sub-
tract out atmospheric constituents from the observations.
Finally, on-board monitoring of the atmosphere can support



the early detection of dust storms and the identification of
water ice clouds.

In previous work, Smith et al. analyzed fully calibrated THE-
MIS data from bands 3-8 [11]. The model was also informed
by surface emissivity and an atmospheric temperature pro-
file derived from simultaneous TES observations. They used
an iterative least-squares method to derive opacity values
for dust and water ice opacities. After analyzing a martian
year’s worth of THEMIS data and evaluating their model
on synthetic spectra, they determined that the uncertainty
associated with their aerosol estimates was about 0.04 or
10% of the total optical depth, whichever is larger.

The objective is to be able to identify high opacity events.
Since the “background” atmospheric opacities for dust and
ice vary with season, scientists should be able to specify an
optical depth threshold that defines events of interest (for
example, a dust 7 that exceeds 0.8) based on the current
season. Any images collected with an opacity above the
specified limit constitute a detection. To address the issue of
performance accuracy for detecting events, we first assessed
how accurately we can estimate dust and water ice opacities
of the Martian atmosphere using only uncalibrated THEMIS
data.

5.1 Aerosol Opacity Estimation: Algorithm
Our goal was to build a regression model that maps THEMIS
observations at different wavelengths to the dust and wa-
ter ice optical depth values as computed by Smith et al.
We focus on a framelet-based analysis here for several rea-
sons. First, the training data is labeled on a per-framelet
basis. In addition, aggregating pixels into framelets greatly
reduces the computational cost of estimating opacity. Es-
timating opacity on a framelet basis provides a sufficiently
find-grained result that satisfies the science goals of this mis-
sion. We also scaled the input data so that each band had
a zero mean and unit standard deviation.

We used an SVM regression [6] approach to the problem.
This model attempts to trade off a fit to the data with a
“flatness” bias that provides better generalization properties
(to new observations). Given a training data set composed
of items z; and associated opacities 7;, the SVM regression
problem is phrased as follows:

ma. —% Z(af —aq)(af — o) (i - ;)

i
—62(043 + i) + Zﬂ'(af - a;)

subject to

S

i

— ;) =0 and a;,a; €[0,C],

where «;, «j are Lagrange multipliers, (z; - ;) is the dot
product of z; and z;, and € is the tolerance associated with
the regression fit. The output of the support vector machine,
for a given observation z, is obtained by computing

f(z) = Z(Oéi —a;)(zi-x) = b,

where b is a bias term that permits curves that do not pass

through the origin. If either «; or o is greater than 0, then
x; is considered a support vector.

This formulation only penalizes the solution for errors that
are greater than e. For our experiments, we set ¢ to 0.01
and C to 50. It is possible to use the same method with a
kernel function K that implicitly maps the input data into
a higher feature space to permit nonlinear fits, so that the
dot product is expressed in terms of the kernel function:

flx) = (e = a))K(zi,z) = b. (1)
In our experiments, we used a Gaussian kernel (o = 0.1)
due to its superior results on this data set.

One way to reduce the cost of computing the output (opac-
ity) for a new observation (framelet) is to construct a reduced-
set SVM that approximates a given SVM with far fewer sup-
port vectors [2]. That is, instead of using s support vectors
selected from the training set X as in Equation 1, we con-
struct ¢ (t < s) new vectors z;, with coefficients 3; and bias
term b, such that

f(x) = Zﬁz‘/C(Zn ) =V (2)

is as close to the output of the original SVM as possible.
We use the reduced-set method proposed by Tang and Maz-
zoni [12], which yields more accurate approximations more
efficiently than previous techniques. The reduced-set ap-
proach is what made this algorithm feasible for use on-board,
as discussed in Section 6.

5.2 Aerosol Opacity Estimation: Results

We trained separate SVM regression models to estimate dust
and water ice opacity. The total data set consists of 223,690
labeled framelets. We created a training set by arbitrarily
selecting every 50th framelet (2209 framelets) and reserving
the rest for testing (221,481 framelets). The original SVMs
identified 1838 support vectors for the dust opacity estima-
tor and 858 support vectors for the ice opacity estimator.
We created reduced-set versions of each SVM that were lim-
ited to 40 support vectors. We evaluated each model in
terms of the square root of the mean squared error (RMSE)
as well as the mean error (Merr):

Dust Ice
Method RMSE Merr RMSE Merr
SVM 0.086 -0.038 | 0.016 -0.004
Reduced-set SVM | 0.087 -0.040 | 0.016 -0.004

First, we find significantly lower errors when estimating ice
opacity than when estimating dust opacity. The large num-
ber of support vectors selected for dust estimation supports
our intuition that this is a more difficult problem. Water ice
tends to be easier to detect because atmospheric dust can be
easily confused with surface dust, when observing from orbit
around the planet. The RMSE for ice opacity estimation is
well within the uncertainty associated with the labels (0.04),
while the RMSE for dust opacity exceeds this value. How-
ever, it is still sufficiently accurate for detecting events of
interest. The mean error numbers indicate that, on average,
the SVM estimates tend to be lower than the true values. We
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(b) “True” dust optical depth as reported by Smith et al.

Figure 3: Dust optical depths, predicted and “true” reference values. The x-axis indicates time of year (L;).
As in the paper by Smith et al. [11], opacity values are clipped to the ranges shown.

also find that the reduced-set SVM, while drastically reduc-
ing the memory consumption and processing time required
to analyze a new framelet, does not significantly increase the
error rate for either problem. We discuss the benefits of the
reduced-set SVM further in the next section.

The 7 predictions of the full SVM for dust opacity are shown
in Figure 3(a), as a function of time of year and latitude.
Time of year is commonly expressed as Ly, which refers to
the planet’s position in its orbit around the sun and varies
from 0°to 360°. Here, we permit Ly to grow beyond 360 to
show successive years on the same plot. These results match
those of Smith et al. in Figure 3(b) quite closely, with the
same dust event observed early on and three large storms
appearing in around Ls = 580°. However, the magnitude
of these events is slightly underestimated by the SVM, con-
sistent with the mean error results above. The 7 values
predicted for the water ice opacity (Figure 4) provide an
even better match to the reference values.

As described above, in an operational setting, scientists would
be able to specify a minimum 7 threshold that defines events
of interest. A separate threshold could be specified for dust
and water ice opacity analysis. A positive detection could be
handled in a variety of ways, depending on the bandwidth
available, ranging from a single bit indicating that a detec-

tion occurred up to the transmission of full observation that
triggered the detection. We conducted experiments with a
limited bandwidth scenario, in which only % of the data
that is collected can be transmitted. We specified a thresh-
old of 0.4 for dust opacity and 0.2 for ice opacity. We evalu-
ated the hit rate achieved for a given bandwidth limit as the
ratio of transmitted framelets of interest to total framelets
transmitted. If framelets are randomly selected for transmis-
sion, a constant baseline hit rate is achieved (see Figure 5).
This hit rate is about 2% for dust events and 4% for water
ice clouds. However, if we use the SVM regression method
to estimate the opacity of each framelet, we can increase
this hit rate dramatically. The benefits of this approach are
most apparent when bandwidth is severely limited. This is
the case for any event that is rare.

6. MOVING ALGORITHMS ON-BOARD

After the development of the algorithms and evaluation to
validate that they meet accuracy performance requirements,
they must be ported to a flight software environment and
tested for computational resource usage. The on-board en-
vironment is constrained in a number of ways. All software
intended to run on the spacecraft must run in a very limited
memory footprint using only static or pre-allocated memory.
The processor is also a carefully controlled resource. The
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(a) Atmospheric water ice optical depth as predicted by a Gaussian SVM regression.

Latitude

05

0.45

0.4

0.35

03

0.25

0.2

330 360

390

420 450 480 510 540 570

Time of year (Ls)

600

630 660 690 720 750 780

(b) “True” ice optical depth as reported by Smith et al.

Figure 4: Water ice optical depths, predicted and “true” reference values. The x-axis indicates time of year
(Ls). As in the paper by Smith et al. [11], opacity values are clipped to the ranges shown.

algorithms must run efficiently and fast enough to keep up
with the data acquisition rate of the instrument. During op-
erations, machine learning algorithms running on-board will
only be allocated a fraction of the total processing power.
Runaway algorithms may be terminated or could result in
the spacecraft entering a safe-mode which would disable it
temporarily. It is therefore important to characterize the
operation of the algorithms in an environment as similar to
that on-board the spacecraft as possible.

6.1 Evaluation of Resource Requirements

The algorithms were initially developed and tested in the
Matlab environment. Next, they were ported to C under
Linux. The Linux versions of the algorithms were tested to
ensure that they reproduced the results obtained under Mat-
lab. Small changes were then required to port the algorithms
to the VxWorks operating system running on the PPC750
testbed. Again, the algorithms were tested to ensure that
they reproduced the same results in the new environment.
The PPC750 testbed simulates a flight-like software config-
uration. It differs from a spacecraft in two ways: there is
access to mass storage using file I/O, and we have control
over 100% of the processor.

The algorithms were profiled for execution time and mem-

ory consumption on a Linux workstation (Workstation in
Table 2) and on the PPC750 testbed (Testbed in Table 2).
The Workstation machine was configured with a 1.793 GHz
AMD Opteron Processor with 8 GB RAM, and the Testbed
machine with a 150 MHz PPC750 with 128 MB of RAM.
For the purposes of testing, time required for file I/O was
not counted. We report execution speed for the thermal
anomaly and polar cap detector algorithm in terms of the
number of pixels per second that can be processed. We re-
port the number of framelets per second for the aerosol opac-
ity estimation algorithm. We tested both the full SVM and
the reduced-set SVM on the Testbed, but only the full SVM
on the Workstation. We considered running the reduced-set
SVM on the Workstation unnecessary since the processing
time is strictly linearly related to the number of support
vectors. In Table 2, the performance of reduced-set SVM on
the Workstation was estimated from the full SVM results.

The Mars Odyssey spacecraft has a RAD6000 processor run-
ning at 20 MHz. On-board analysis methods would only be
allowed to use about 20% of the processor. They would have
up to 40MB of heap memory available. The THEMIS in-
strument collects data at the rate of about 9600 pixels per
second. The algorithms would be expected to run during
and after data acquisition to determine if the collected data
contains an event of interested should therefore be stored for
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Figure 5: The fraction of interesting framelets returned as a function of bandwidth constraints.

later transmission to Earth. Although the PPC750 Testbed
is similar to the spacecraft, its processor is of a more re-
cent generation and is approximately 10 times faster. Tak-
ing into account that on-board algorithms are only allotted
only 20% of the processor, the Testbed is about 50 times
faster. Therefore, we also show estimated processing speeds
for each algorithm in a Spacecraft setting (Table 2). Our
profiling results show that the algorithms can easily keep up
with the output of the instrument even given the limitations
of on-board processing power.

6.2 Lessons Learned

The successful implementation of machine learning in an op-
erational system on-board a spacecraft requires addressing
challenges that range from the analytical technical realm, to
the fuzzy, philosophical domain of entrenched belief systems
held by scientists and mission managers. Here we briefly dis-
cuss several practical lessons learned during this study.

First, the purpose of on-board science data analysis algo-
rithms is to increase the mission science return. Therefore,
to ensure that the results directly address mission needs, it
is essential to work closely with domain scientists to under-
stand the specific scientific problems they are addressing and
how the use of on-board algorithms may help them achieve
their goals. Working with the domain scientists must be at
a tight level of interaction. They must provide information
and define interestingness in ways that they may not be ac-
customed to as well as understand the practical limitations
of an on-board algorithm. It often requires several iterations
to arrive at well defined interest criteria that are practical for
a detection algorithm. Generally, false alarms and missed
detections have very different costs associated with them,
and these factors must be addressed by the system.

The second important lesson is that the on-board data min-
ing algorithms do not necessarily have to perform data anal-
ysis at the level of fidelity of a ground-based analysis algo-
rithm. This is a key aspect of the problem that can be
exploited so that the system can fit within the computa-
tional resource limits. For example, the science goal may be
to characterize small dust storms. The on-board algorithm

need not be able to reliably identify all dust storm param-
eters that the scientist may want to know about the dust
storm. The on-board algorithm need only identify the pres-
ence of a dust storm and indicate that this data should be
marked as high priority to send to the ground for complete
scientific analysis.

Third, as with most data mining systems that are to be de-
ployed, it is important to start with simple methods and add
complexity only when necessary. For example, the thermal
anomaly detector uses a global threshold. As a result, it is
not sensitive to small local thermal changes. It would have
been more desirable to be able to have a local analysis al-
gorithm. This was not selected due to three factors. First,
no positive examples exist, because a true thermal anomaly
has never been observed. Second, the actual occurrence of a
thermal anomaly is very unlikely. The cost of developing a
locally adaptive algorithm including testing and minimizing
false alarms, without true positive examples, was too high
relative to the likelihood of such an event actually occurring.
These tradeoffs must be addressed for each science problem
that an on-board analysis system seeks to solve.

7. CONCLUSIONS

There are a number of benefits to mining scientific data
on-board a spacecraft including data prioritization, sum-
marization, and reaction to dynamic events. This is an
emerging paradigm and presents a significant change from
the traditional ways of operating a spacecraft. Successful
on-board data mining must meet the accuracy requirements
provided by scientists while operating within the constrained
on-board computing environment. We have presented three
such algorithms for use on-board the Mars Odyssey space-
craft. These algorithms have all met the science require-
ments and processing requirements and are in the process of
being integrated into the Odyssey flight software for future
use on-board the spacecraft.

In addition to developing the algorithms themselves, we have
also conducted a careful empirical study to assess the re-
source requirements and to determine whether they are re-
alistic given the anticipated spacecraft computing environ-



Table 2: Resource requirements for all three data analysis methods; “pix” stands for “pixels” and “fits”
stands for “framelets”. The THEMIS instrument collects data at approximately 9.6 Kpix/sec (0.12 flts/sec).

Algorithm Processing Speed Memory in KB
Workstation Testbed Spacecraft (est.) | (code segment)

Thermal anomaly detection 537.3 Mpix/sec 6.9 Mpix/sec 140 Kpix/sec 2

Polar cap edge detection 148.0 Mpix/sec 2.4 Mpix/sec 48 Kpix/sec 4

Dust opacity (full SVM) 5500 flts/sec 160 flts/sec 3.2 flts/sec 66

Ice opacity (full SVM) 12,000 flts/sec 350 flts/sec 7 flts/sec 30

Dust opacity (reduced SVM) | 260,000 flts/sec (est.) 7560 flts/sec 151 flts/sec 2

Ice opacity (reduced SVM) 260,000 fits/sec (est.) 7570 flts/sec 151 flts/sec 2

ment. We have demonstrated that each algorithm falls well
within the CPU and memory constraints. Finally, we have
contributed a discussion of the lessons learned when working
in this application area that can serve to guide future efforts
to enhance the analysis capabilities of spacecraft.
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